53 research outputs found

    Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride

    Get PDF
    Insulating films are essential in multiple electronic devices because they can provide essential functionalities, such as capacitance effects and electrical fields. Two-dimensional (2D) layered materials have superb electronic, physical, chemical, thermal, and optical properties, and they can be effectively used to provide additional performances, such as flexibility and transparency. 2D layered insulators are called to be essential in future electronic devices, but their reliability, degradation kinetics, and dielectric breakdown (BD) process are still not understood. In this work, the dielectric breakdown process of multilayer hexagonal boron nitride (h-BN) is analyzed on the nanoscale and on the device level, and the experimental results are studied via theoretical models. It is found that under electrical stress, local charge accumulation and charge trapping/detrapping are the onset mechanisms for dielectric BD formation. By means of conductive atomic force microscopy, the BD event was triggered at several locations on the surface of different dielectrics (SiO2, HfO2, Al2O3, multilayer h-BN, and monolayer h-BN); BD-induced hillocks rapidly appeared on the surface of all of them when the BD was reached, except in monolayer h-BN. The high thermal conductivity of h-BN combined with the one-atom-thick nature are genuine factors contributing to heat dissipation at the BD spot, which avoids self-accelerated and thermally driven catastrophic BD. These results point to monolayer h-BN as a sublime dielectric in terms of reliability, which may have important implications in future digital electronic devices.Fil: Jiang, Lanlan. Soochow University; ChinaFil: Shi, Yuanyuan. Soochow University; China. University of Stanford; Estados UnidosFil: Hui, Fei. Soochow University; China. Massachusetts Institute of Technology; Estados UnidosFil: Tang, Kechao. University of Stanford; Estados UnidosFil: Wu, Qian. Soochow University; ChinaFil: Pan, Chengbin. Soochow University; ChinaFil: Jing, Xu. Soochow University; China. University of Texas at Austin; Estados UnidosFil: Uppal, Hasan. University of Manchester; Reino UnidoFil: Palumbo, FĂ©lix Roberto Mario. ComisiĂłn Nacional de EnergĂ­a AtĂłmica; Argentina. Universidad TecnolĂłgica Nacional; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Lu, Guangyuan. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Wu, Tianru. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Wang, Haomin. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Villena, Marco A.. Soochow University; ChinaFil: Xie, Xiaoming. Chinese Academy of Sciences; RepĂșblica de China. ShanghaiTech University; ChinaFil: McIntyre, Paul C.. University of Stanford; Estados UnidosFil: Lanza, Mario. Soochow University; Chin

    Tunable band gap in few-layer graphene by surface adsorption

    Full text link
    There is a tunable band gap in ABC-stacked few-layer graphene (FLG) via applying a vertical electric field, but the operation of FLG-based field effect transistor (FET) requires two gates to create a band gap and tune channel's conductance individually. Using first principle calculations, we propose an alternative scheme to open a band gap in ABC-stacked FLG namely via single-side adsorption. The band gap is generally proportional to the charge transfer density. The capability to open a band gap of metal adsorption decreases in this order: K/Al > Cu/Ag/Au > Pt. Moreover, we find that even the band gap of ABA-stacked FLG can be opened if the bond symmetry is broken. Finally, a single-gated FET based on Cu-adsorbed ABC-stacked trilayer graphene is simulated. A clear transmission gap is observed, which is comparable with the band gap. This renders metal-adsorbed FLG a promising channel in a single-gated FET device

    High‐Performance Flexible Broadband Photodetectors Based on 2D Hafnium Selenosulfide Nanosheets

    Get PDF
    2D transition‐metal dichalcogenides have attracted significant interest in recent years due to their multiple degrees of freedom, allowing for tuning their physical properties via band engineering and dimensionality adjustment. The study of ternary 2D hafnium selenosulfide HfSSe (HSS) high‐quality single crystals grown with the chemical vapor transport (CVT) technique is reported. An as‐grown HSS single crystal exhibits excellent phototransistor performance from the visible to the near‐infrared with outstanding stability. A giant photoresponsivity (≈6.4 × 104 A W−1 at 488 nm) and high specific detectivity (≈1014 Jones) are exhibited by a device fabricated by exfoliating single‐crystal HSS of nano‐thickness on a rigid Si/SiO2 substrate. The application of HSS single crystal is extended to yield a sensible flexible photodetector of photoresponsivity up to ≈1.3 A W−1 at 980 nm. The photoresponsivity of CVT‐grown HSS single crystal is significantly larger than those fabricated with other existing Hf‐based chalcogenides. The results suggest that the layered multi‐elemental 2D chalcogenide single crystals hold great promise for future wearable electronics and integrated optoelectronic circuits

    Millikelvin-resolved ambient thermography.

    No full text
    • 

    corecore